

General Introduction

The Agilent N4010A Wireless Connectivity Test Set is a measurement solution that enables efficient and lower cost test for products and components that incorporate *Bluetooth*[®] wireless technology, Wireless LAN (WLAN), and other emerging wireless connectivity technologies.

The *Bluetooth* feature set (N4010A Option 101) provides the ability to connect to *Bluetooth* devices in either test mode or normal mode and make measurements in accordance with the *Bluetooth* wireless technology RF test specification. *Bluetooth* audio (Option 111) and headset profile (Option 112) enable testing of *Bluetooth* voice channels and headset products. *Bluetooth* Enhanced Data Rate (EDR) options add capability to perform transmitter (Options 105 and 106) and receiver (Option 105) testing for *Bluetooth* EDR devices.

The N4017A *Bluetooth*[®] Graphical Measurement Application, a PC-based software product, works in a complementary manner with the N4010A test set and provides the ability to fully configure the test set and display both numerical and graphical results. The Wireless LAN feature set (N4010A Option 102/103) combines a fully-calibrated vector signal generator and wide bandwidth signal analyzer into a single test set, which enables efficient and repeatable WLAN module test from R&D through to production.

The N4010A test set also works with the Agilent 89601A and 89607A Vector Signal Analyzer software. This software provides the flexibility to make a broad range of measurements for evaluating wireless formats in the 2.4 GHz or 5 GHz band, including ZigBee/IEEE 802.15.4.

The test set will meet its warranted performance after one hour within the stated environmental operating range plus 40 minutes after turn on. Unless otherwise stated all specifications are valid over the temperature range 20 to 30 °C. Supplemental characteristics are intended to provide additional information, useful in applying the instrument by giving typical (expected), but not warranted, performance parameters. These characteristics are shown in *italics* or labeled as nominal.

Bluetooth Specifications

N4010A Option 101 Bluetooth

- provides ability to act as a *Bluetooth* master, perform inquiry, and establish a connection in Test mode or Normal mode
- makes measurements in accordance with *Bluetooth* RF Test Specification 1.2
- integral sequencer allows test plans to be created and edited easily
- all tests default to SIG standard settings user may change settings to match particular test requirements

Bluetooth tests¹

Output power

Link conditions

Link mode

Hopping² Packet type² Payload² test mode (loopback, Tx), normal mode (ACL) on or off DH1, DH3, DH5, HV3 PRBS9, BS00, BSFF, BS0F, BS55

Measurement

Supportedaverage power, peak powermeasurements3Number of measurement3channels3+23 to -70 dBmMeasurement resolution0.01 dBMeasurement accuracy±0.5 dB

Power control

Link conditions

Link mode	test mode (loopback, Tx)
Hopping	on or off
Packet type	DH1, DH3, DH5, HV3
Payload	PRBS9, BS00, BSFF, BS0F, BS55
Measurement	
Supported	average power, min/max step
measurements	size
Number of measurement $channels^3$	3
Range	+23 to -70 dBm
Measurement resolution	0.01 dB
Measurement accuracy	±0.5 dB

Modulation characteristics

Link conditions	
Link mode	test mode (loopback, Tx),
	normal mode (ACL)
Hopping ²	on or off
Packet type ²	DH1, DH3, DH5, HV3
Payload ²	BS55, BS0F
Measurement	
Supported	min/max $\Delta f1_{avg}$, min $\Delta f2_{max}$ (kHz)
measurements	total $\Delta f2_{max} > \Delta f2_{max}$ lower limit (%)
	min of min $\Delta f2_{avg} / \max \Delta f1_{avg}$,
	pseudo frequency deviation
	$(\Delta f1 \text{ and } \Delta f2)$ in normal mode
Number of measurement	3
channels ³	
RF input level range	+23 to -70 dBm
Deviation range	–400 to +400 kHz
Deviation resolution	100 Hz
Ratio resolution	0.1%
Measurement accuracy ⁴	as frequency reference ±25 Hz

Performance of the N4010A signal source or signal analyzer over wider temperature (specified later in this document) applies to all the *Bluetooth* tests listed.

Normal mode measurements made with hopping on, NULL packet, and no payload.
 Internal sequencer enables three measurement channels to be measured

consecutively. Measurements on all 79 *Bluetooth* channels are supported. 4. Example, using the 10 MHz reference with accuracy of 10 Hz (1 ppm), at frequency

of 2.402 GHz, frequency accuracy would be in the range $\pm((2.402 \text{ GHz x 10 Hz})/10 \text{ MHz}) \pm 25 \text{ Hz} = \pm 2402 \text{ Hz} \pm 25\text{ Hz} = \pm 2427 \text{ Hz}.$

Initial carrier frequency tolerance

Link conditions

Link mode

Hopping¹ Packet type¹ Payload¹

Measurement Supported measurements

channels²

Frequency

test mode (loopback, Tx), normal mode (ACL) on or off DH1, DH3, DH5, HV3 PRBS9, BS00, BSFF, BS0F, BS55

maximum and minimum error/channel Number of measurement 3

+23 to -70 dBm nominal channel freq ±150 kHz Measurement accuracy³ as frequency reference ±25 Hz

Carrier frequency drift

RF input level range

Link conditions

Link mode	test mode (loopback, Tx),
	normal mode (ACL)
Hopping ¹	on or off
Packet type ¹	DH1, DH3, DH5, HV3
Payload ¹	PRBS9, BS00, BSFF, BS0F, BS55
Measurement	
Supported	maximum and minimum
measurements	measurements drift at each
	frequency during the test,
	pseudo frequency drift in
	normal mode
Number of measurement	3
channels ²	
RF input level range	+23 to -70 dBm
Measurement range	±100 kHz

Measurement accuracy³ as frequency reference ±25 Hz

Sensitivity - single slot packets

Link conditions

LINK CONditions	
Link mode	test mode (loopback, Tx),
	normal mode (ACL)
Hopping ¹	on or off
Packet type ¹	DH1, DH3, DH5
Payload ¹	PRBS9, BS00, BSFF, BS0F, BS55
Number of bits	1 to 100,000,000
Impairments – default	to table
Frequency offset	±75 kHz
Modulation index	0.28 to 0.35
Modulation index	0.01
resolution	
Symbol timing	–20 ppm, 0, +20 ppm
Symbol timing resolution	1 ppm
Measurement	
Supported	BER, number of bit errors,
measurements	number of Rx bits, PER,
	number of NACK packets,
	number of errored packets,
	number of Tx packets. PER only
	in normal mode
Number of measurement	3, hopping
channels ²	
Range	0 to -90 dBm
Resolution	0.1 dB
Accuracy ^{4, 5}	±0.6 dB, -35 to -90 dBm
-	$\pm 1dB$, > -35 dBm
	,

Sine impairments (applicable for single slot packets, multi-slot packets, and maximum input level)

Modulation frequency	300 Hz to 1.6 kHz
range	
Resolution	100 Hz
Maximum deviation	0 Hz to 40 kHz
range	
Resolution	1 kHz

'Dirty transmitter' impairments table for Rx sensitivity tests (applicable for single slot packets, multi-slot packets, and maximum input level)

Set of parameters	Carrier frequency offset (kHz)	Modulation index	Symbol timing error (ppm)
1	75	0.28	-20
2	14	0.30	-20
3	-2	0.29	+20
4	1	0.32	+20
5	39	0.33	+20
6	0	0.34	-20
7	-42	0.29	-20
8	74	0.31	-20
9	-19	0.28	-20
10	-75	0.35	+20

Normal mode measurements made with hopping on, NULL packet, and no payload.
 Internal sequencer enables three measurement channels to be measured

consecutively. Measurements on all 79 Bluetooth channels are supported.

^{3.} Example, using the 10 MHz reference with accuracy of 10 Hz (1 ppm), at frequency of 2.402 GHz, frequency accuracy would be in the range $\pm((2.402~\text{GHz}$ x 10 Hz)/10 MHz) \pm 25 Hz = ±2402 Hz \pm 25Hz = ±2427 Hz.

Verified using CW measurements.
 Add 0.01 dB/°C from 30 to 55 °C, add 0.07 dB/°C from 20 to 0 °C.

Sensitivity – multi-slot packets

Link conditions

Link mode Hopping Packet type Payload Number of bits

Impairments - default to table

Frequency offset ±75 kHz Modulation index 0.28 to 0.35 Modulation index 0.01 resolution Symbol timing Symbol timing resolution 1 ppm

Number of measurement 3, hopping

measurements

Supported

channels¹ Range

Resolution

Accuracy^{2, 3}

on or off DH1, DH3, DH5 PRBS9, BS00, BSFF, BS0F, BS55 1 to 100,000,000

test mode (loopback)

-20 ppm, 0, +20 ppm

Measurement

BER, number of bit errors, number of Rx bits, PER, number of NACK packets, number of errored packets,

number of Tx packets

±0.6 dB, -35 to -90 dBm $\pm 1dB$, > -35 dBm

0 to -90 dBm

0.1 dB

Maximum input level

Link conditions

Link mode Hopping on or off Packet type DH1, DH3, DH5 Payload 1 to 100,000,000 Number of bits Measurement Supported measurements Number of measurement 3 channels¹ Range 0 to -90 dBm Resolution 0.1 dB Accuracy^{2, 3}

test mode (loopback) PRBS9, BS00, BSFF, BS0F, BS55

BER, number of bit errors, number of Rx bits, PER, number of NACK packets, number of errored packets, number of Tx packets

±0.6dB, -35 dBm to -90 dB $\pm 1 \, dB$, > -35 dBm

^{1.} Internal sequencer enables three measurement channels to be measured consecutively. Measurements on all 79 Bluetooth channels are supported.

^{2.} Verified using CW measurements.

^{3.} Add 0.01 dB/°C from 30 to 55 °C, add 0.07 dB/°C from 20 to 0 °C.

N4010A Option 101 signal source

The N4010A signal source is used in Bluetooth test cases described earlier in this document.

> ±300 kHz ±250 Hz

 $0.1 \ \mathrm{dB}$

1.5:1

0 to -90 dBm

2.402 to 2.480 GHz;

79 channels at 1 MHz spacing

as frequency reference ±25 Hz

±0.6 dB, -35 to -90 dBm $\pm 1 \ dB > -35 \ dBm$

Frequency

Range

Accuracy¹ Offset range Offset accuracy

Output power

Range Resolution Accuracy^{2, 3}

Output VSWR

Modulation

In accordance with Bluetooth Radio specification version 1.2 GFSK Type Modulation index range 0.28 to 0.35 Modulation index 0.01 resolution Depth accuracy⁴ ± 0.5 kHz Baseband filter to Bluetooth specification Symbol timing -20 to +20 ppm Symbol timing resolution 1 ppm

N4010A Option 101 signal analyzer

The N4010A signal analyzer is used in Bluetooth test cases described earlier in this document.

Frequency	
Range	2.402 to 2.480 GHz;
	79 channels at 1 MHz spacing
Accuracy ²	as frequency reference ±50 Hz
Power measurement	
Range	+23 to -70 dBm
Damage level	+25 dBm
Resolution	0.01 dB
Accuracy ⁵	±0.5 dB
Input VSWR	< 1.5:1
Modulation	
Туре	GFSK
Deviation range	±400 kHz
Deviation resolution	0.1 kHz
Modulation depth	as frequency reference ±50 Hz
accuracy	
Baseband filter	1.3 MHz (compliant to Bluetooth
bandwidth	specification), 3 or 5 MHz

^{1.} Example, using the 10 MHz reference with accuracy of 10 Hz (1 ppm), at frequency of 2.402 GHz, frequency accuracy would be in the range $\pm ((2.402 \text{ GHz} \times 10 \text{ Hz}))$ 10 MHz) ± 25 Hz = ±2402 Hz ± 25Hz = ±2427 Hz.

Verified using CW measurements.
 Add 0.01 dB/°C from 30 to 55 °C, add 0.07 dB/°C from 20 to 0 °C.

Verified by interpolation to static frequency offset measurements. 4.

^{5.} Add 0.02 dB/°C from 30 to 55 °C and 0.025 dB/°C from 20 to 0 °C.

N4010A Option 105/106 Bluetooth EDR

Bluetooth EDR Transmitter Tests (N4010A-105, N4010A-106)

EDR relative transmit power

Link conditions

Link mode Payload Packet type continuous Tx (no signaling) PRBS9, BS00, BSFF, BS55 2-DH1, 2-DH3, 2-DH5, 3-DH1, 3-DH3, 3-DH5

Measurement

Supported measurements

Accuracy¹

power in GFSK header, power in PSK payload, relative power between GFSK header to PSK, payload

Number of measurement 79 channels Range +23 to -70 dBm Resolution 0.01 dB

0.01 dB ±0.5 dB

EDR modulation accuracy and carrier frequency stability

Link conditions

Link conditions	
Link mode	continuous Tx (no signalling)
Payload	PRBS9, BS00, BSFF, BS55
Packet type	2-DH1, 2-DH3, 2-DH5, 3-DH1,
	3-DH3, 3-DH5
Measurement	
Supported	worst case initial frequency
measurements	error (ω_i) for all packets
	(carrier frequency stability),
	worst case frequency error for
	all blocks (ω_0), ($\omega_0 + \omega_i$) for all
	blocks, rms DEVM, peak DEVM,
	99% DEVM; results also can be
	obtained for individual blocks
Number of measurement	79
channels	
Range	+23 to -70 dBm
Resolution	±25 Hz carrier frequency
	stability and frequency error
Accuracy	
Modulation accuracy	N4010A receiver residual DEVM Average $< 2\%$

Peak

99%

Carrier frequency stability and frequency error²

EDR differential phase encoding

Link conditions

Link mode Payload Packet type continuous Tx (no signaling) PRBS9 2-DH1, 2-DH3, 2-DH5, 3-DH1, 3-DH3, 3-DH5

< 5%

< 3.5%

as frequency reference ±25 Hz

Measurement

Supported measurementsPERNumber of measurementchannels79RF input level range+23 to -70 dBm

^{1.} Verified using CW measurements.

^{2.} Example, using the 10 MHz reference with accuracy of 10 Hz (1 ppm), at frequency of 2.402 GHz, frequency accuracy would be in the range \pm ((2.402 GHz x 10 Hz)/ 10 MHz) \pm 25 Hz = \pm 2402 Hz \pm 25Hz = \pm 2427 Hz.

Guard interval measurement

Link conditions

continuous Tx (no signaling) Link mode Payload PRBS9, BS00, BSFF, BS55 Packet type 2-DH1, 2-DH3, 2-DH5, 3-DH1, 3-DH3, 3-DH5

Measurement

Supported measurement of guard interval portion of EDR packet measurements Number of measurement 79 channels RF input level range Resolution

+23 to -70 dBm 0.1 µs

Bluetooth EDR receiver tests (N4010A-105 only)

EDR Rx sensitivity

Link conditions	
Link mode	continuous Rx (no signaling)
Payload	PRBS9 ¹
Packet type	2-DH1, 2-DH3, 2-DH5, 3-DH1,
	3-DH3, 3-DH5
Number of bits	determined by equipment
	under test (EUT)

'Dirty transmitter' impairments table for EDR Rx sensitivity test

	Carrier	Symbol	
Set of	frequency	timing	
parameters	offset (kHz)	error (ppm)	
1	0	0	
2	+65	+20	
3	-65	-20	

Synchronized ±10 kHz FM sine wave impairment is supported, as defined in Bluetooth Test Specification version 1.1/1.2/2.0+EDR.

Measurement

dependent on EUT capability
(e.g. PER, BER)
–10 to –90 dBm
0.1 dB
±0.9 dB

EDR Rx BER floor sensitivity

Link conditions

continuous Rx (no signaling) PRBS91 2-DH1, 2-DH3, 2-DH5, 3-DH1, 3-DH3, 3-DH5 determined by EUT

dependent on EUT capability (e.g. PER, BER) -10 to -90 dBm 0.1 dB ±0.9 dB

EDR Rx maximum input level

Link conditions

Accuracy²

Link mode continuous Rx (no signaling) Payload PRBS91 2-DH1, 2-DH3, 2-DH5, 3-DH1, Packet type 3-DH3, 3-DH5 determined by EUT Number of bits Measurement Supported dependent on EUT capability measurements (e.g. PER, BER) Range -10 to -90 dBm Resolution 0.1 dB

±0.9 dB

1. Default packet structure is BD Address = BDBDBDBDBDBD, LT Address = 0, Guard interval = $5.0 \,\mu$ s, Packet length = maximum.

^{2.} Add 0.013 dB/°C from 30 to 55 °C, add 0.02 dB/°C from 20 to 0 °C.

N4010A Option 111 Bluetooth audio¹

Number of SCO	1
channels supported CODEC air interfaces	CVSD, A-law, µ-law
supported	, <u>-</u> , p
Frequency response	+0.5 to -1.5 dB
	(200 to 3400 Hz ^{2, 3})
	See Figure 1 for CVSD
	frequency response
Maximum input/output	$3.28 V pk-pk = 1.16 Vrms^{3, 4}$
signal levels	For CVSD, recommend level
	$\leq 138 \ mVrms^4$
Distortion/noise	better than -52 dB (A-law, µ-law)
(THD+N)	better than -35 dB (CVSD ^{3,4})
	see Figures 2a and 2b for CVSD
	distortion characteristics
Input/output connectors	BNC input, BNC output
Input impedance	$150 \ k\Omega$
Output impedance	50 k Ω (AC coupled)
Minimum output load	$0 \ \Omega$ (AC coupled, no damage
	caused by short)
Variation of gain	$< 0.5 \ dB^{3, 4}$
(-55 to +3 dBm,	
225 to 2040 Hz)	
Idle noise	better than -64 dBm
(200 Hz to 20 kHz)	
Out of band performance	better than -30 dB (A-law, µ-law)
(4 to 32 kHz)	better than -42 dB (CVSD)

Qualified in accordance to ITU specification G.711 [8], where 775 mVrms (0 dBm) analog sine wave input voltage is translated to 0 dBm0 digital CVSD transmit signal and 0 dBm0 sine wave CVSD receive signal is output as 775 mVrms (0 dBm) analog voltage.

 ⁽⁰ dBm) analog voltage.
 For CVSD this performance only applies within the CVSD linear range.
 CVSD linear range is defined as signals of 200 to 3400 Hz and level < -15 dBm0 (138 mVrms analogue). Outside the CVSD linear range (e.g. signals of frequencies above 600 Hz with levels > -15 dBm0) the response rolls of due to the slew-rate limitations set by *Bluetooth's* CVSD algorithm parameters.
 CVSD distortion (THD+N) at 1020 Hz and level -15 dBm0 is better than 3.5 percent.

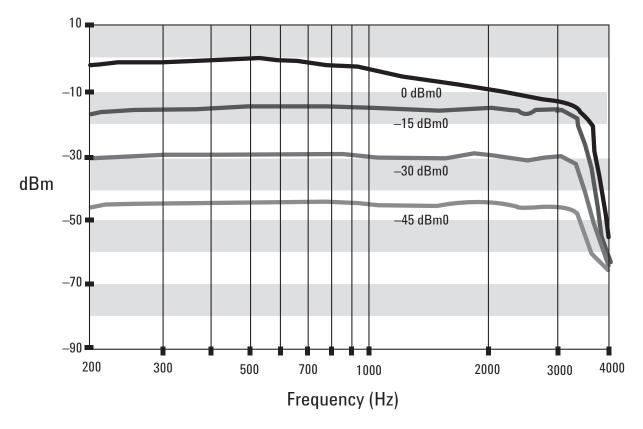


Figure 1. CVSD frequency response

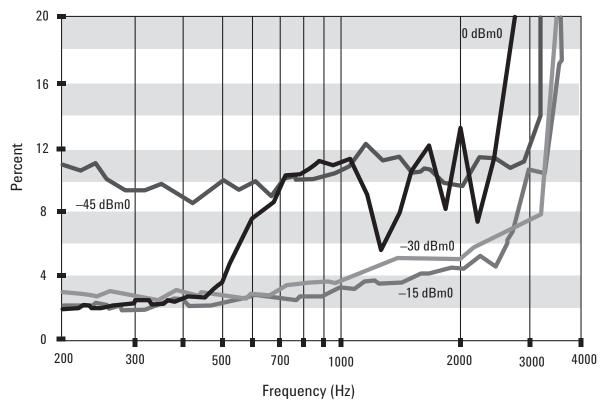


Figure 2a. CVSD distortion percentage characteristic

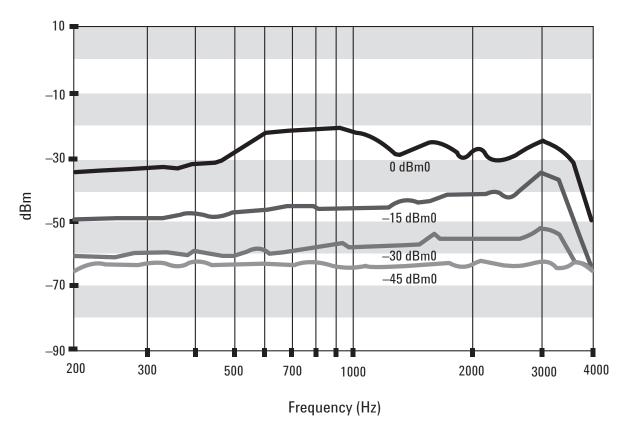


Figure 2b. CVSD distortion dBm characteristic

Wireless LAN specifications

N4010A Options 102/103 WLAN Tx/Rx analysis

Measurements

The table below shows the key measurements covered by the N4010A Options 102/103 and the 89607A WLAN test suite software. For further N4010A/89607A data, refer to the application note Agilent N4010A Wireless Connectivity Test Set Performance Guide Using the 89601A Vector Signal Analysis Software and the 89607A WLAN Test Suite Software, literature number 5989-0637EN.

NT 4010 4

	N4010A	
Transmitter	Options	
functionality	102/103	89607A
Auto-range	yes	yes
CW		
Average power	yes	no
CW frequency offset	yes	no
Bursted OFDM		
Average power	yes	yes
Peak power	no	yes
Center frequency tolerance	yes	yes
	(frequency error)	•
Clock frequency tolerance	no	yes
Constellation error (EVM)	yes	yes
Center frequency leakage	yes	yes
Spectral flatness	yes	yes
Spectral mask	yes	yes
Fast OFDM demodulation me	asurement	
EVM	yes	no
Frequency error	yes	no
IQ offset	yes	no
Gated power	yes	no
Gated spectrum	yes	no
	,00	
Bursted DSSS		
Average power	yes	yes
Peak power	no	yes
Center frequency tolerance	yes	yes
	(frequency error)	
Chip clock frequency tolerance		yes
Center frequency leakage	yes	yes
Predicted suppression	(carrier suppression	
EVM (RMS)	no	yes
EVM (RMS) EVM (peak)	yes yes	yes yes
Power up ramp	no	•
Power down ramp	no	yes yes
Spectral mask	yes	yes
-	-	yes
Fast DSSS demodulation mea		
EVM (peak)	yes	no
EVM (RMS)	yes	no
Frequency error	yes	no
IQ offset	yes	no
Gated power	yes	no
Gated spectrum	yes	no

Receiver functionality	N4010A Options 102/103	89607A	
Standard DSSS waveform file	yes	no	
Standard DSSS sequence file	yes	no	
Standard OFDM waveform file	yes	no	
Standard OFDM sequence file	yes	no	
Blanking marker files	yes	no	
High power mode	yes	no	
CW tone	yes	no	
Sampling rate	yes	no	

N4010A vector signal generator specifications

The specifications apply to the N4010A with Options 102, 103, or 105 installed. The vector signal generator is used in WLAN and *Bluetooth* EDR receiver test cases described earlier in this document. N4010A-101 *Bluetooth* signal source specifications are different and are given in the *Bluetooth* section in this document.

Frequency range	2.402 to 2.484 GHz; 4.800 to 5.875 GHz (Option 103 only)
Frequency accuracy ¹ Output power range ¹	As frequency reference ±25 Hz ² 2.402 to 2.484 GHz: -10 to -95 dBm 4.800 to 5.875 GHz: -15 to -95 dBm 802.11a/g OFDM:
	-13 dBm maximum (nominal) 802.11b DSSS: -8 dBm maximum (nominal)
Absolute amplitude	2.402 to 2.484 GHz:
accuracy ¹	$\pm 0.9 \text{ dB}^3(-10 \text{ to } -90 \text{ dBm});$
	±0.9 dB (> -90 to -95 dBm)
	4.800 to 5.875 GHz:
	±0.9 dB ³ (–15 to –90 dBm);
	±0.9 dB (> -90 to -95 dBm)
Resolution	0.1 dB
Output impedance	50 Ω (nominal)
Modulation type	Arbitrary based on downloaded
	file
Arbitrary waveform	64 Msa (256 MB RAM;
memory	1 sample = 4 bytes)
Error vector magnitude	$802.11a: < 2\%^4$
C	$802.11b: < 10\%^4$
	$802.11g: < 2\%^4$
	Bluetooth EDR: $< 2\%$

4. Up to 40 MHz bandwidth.

^{1.} Verified using CW measurements.

Example, using the 10 MHz reference with accuracy of 10 Hz (1 ppm), at frequency of 2.402 GHz, frequency accuracy would be in the range ±((2.402 GHz x 10 Hz)/ 10 MHz) ± 25 Hz = ±2402 Hz ± 25Hz = ±2427 Hz.

^{3.} Add 0.013 dB/°C from 30 to 55 °C, add 0.02 dB/°C from 20 to 0 °C.

N4010A vector signal analyzer specifications

When used with 89601A/89607A (requires Option 110 and at least one of Option 101, 102, or 103). For the full N4010A/89601A performance guide refer to application note Agilent N4010A Wireless Connectivity Test Set Performance Guide Using the 89601A Vector Signal Analysis Software and the 89607A WLAN Test Suite Software, literature number 5989-0637EN.

		induiting and input level	
Software, literature nur	nber 5989-0637EN.	Absolute power	$\pm 0.5 \text{ dB}^3$ (2.381 to 2.519 GHz)
Deufermen		measurement	$\pm 0.8 \text{ dB}^3$ (4.800 to 5.875 GHz)
Performance		accuracy ²	
Sampling frequency	100 MHz digital down-conversion	RF input VSWR	< 1.5:1 (return loss: > 14 dB)
Quantization	14 bits		(2.381 to 2.519 GHz)
Sampling resolution	10 ns		< 1.8:1 (return loss: > 10 dB)
Acquisition buffer	5 ms		(4.800 to 5.875 GHz)
Frequency specification	ns	Signal-to-noise ratio ^{4, 5}	> 52 dB for 22 MHz bandwidth
Frequency range ¹	2.381 to 2.519 GHz		(2.381 to 2.519 GHz)
	4.800 to 5.875 GHz (Option 103		> 45 dB for 22 MHz bandwidth
	only)		(4.800 to 5.875 GHz)
Frequency resolution	1 MHz	Spurious responses	< -90 dBm (2.381 to 2.519 GHz);
Frequency accuracy ²	as frequency reference ±50 Hz	In-band spurious ⁶	< -60 dBm (4.800 to 5.875 GHz)
IF bandwidth	switchable between 22 and 40 MHz		
Stability (noise	10 kHz: < -75 dBc/Hz (nominal)	Trigger ranges	
sidebands) offset	100 kHz: < -95 dBc/Hz (nominal)	Internal trigger power	-60 to +23 dBm for 22 MHz
			bandwidth; -65 to +23 dBm for
			5 MHz bandwidth (2.381 to
			2.519 GHz) -65 to 0 dBm for
			22 MHz bandwidth (4.800 to
			5.875 GHz)
		External trigger voltage	3.3 V (TTL)
		Trigger delay range	-4.5 to 5.2 ms, or time capture
			length, whichever is shorter
			(see performance guide
			5989-0637EN)
		Trigger hold-off range	20 ns to 0.65 ms
		Modulation specification	ons ⁷
		Residual error vector	802.11a: < 2%
		magnitude (EVM)	802.11b: < 2%
			802.11g: < 2%

Amplitude specifications

Maximum safe input level +25 dBm

+23 to -70 dBm

+23 to -50 dBm

(2.381 to 2.519 GHz)

(4.800 to 5.875 GHz)

Power measurement

range

- 1. This is the center frequency tuning range for a 22 MHz span.
- Verified using CW measurements.
 Add 0.02 dB/°C from 30 to 55 °C, add 0.025 dB/°C from 20 to 0 °C.
- 4. 0 dBm input.
- 5. Specification applies to instruments serial number GB45460101 or greater,
- otherwise this specification for the 2.4 GHz band is > 46 dB (22 MHz bandwidth), > 50 dB (5 MHz bandwidth).
- 6. Specification applies to instruments serial number GB45460101 or greater, otherwise this specification is < -70 dBm (2.381 to 2.519 GHz).
- 7. For power levels > -50 dBm.

PC Hardware Specifications

- Microsoft[®] Windows[®] 2000 and XP[®] only
- 2.4 GHz Pentium[®] or equivalent minimum, 2.8 GHz recommended
- 200 MB available on hard drive
- 256 MB RAM minimum, 500 MB RAM recommended
- USB 2.0, TCP-IP LAN, or GPIB connection to test set
- Agilent I/O Libraries Suite 14.1 or greater. For information on Agilent IO Libraries Suite features and installation requirements, please go to: www.agilent.com/find/iosuite/datasheet

N4010A General Specifications

Frequency reference

 $\begin{array}{ll} \mbox{Frequency} & 10 \ \mbox{MHz} \\ \mbox{Accuracy} & & & \\ 0 \ \mbox{to} \ 45 \ ^{\circ}\mbox{C} & \pm 1 \ \mbox{x} \ 10^{-6} \ (\pm 1 \ \mbox{ppm}) \\ \mbox{Aging} \ (\mbox{first year}) & \pm 1 \ \mbox{x} \ 10^{-6} \ \mbox{year} \\ \mbox{10 \ MHz input} & \mbox{BNC}(f), \ 50 \ \mbox{\Omega} \\ \mbox{10 \ MHz output} & \mbox{BNC}(f), \ 50 \ \mbox{\Omega} \end{array}$

Power requirements

Voltage	100 to 240 VAC, 47 to 63 Hz
Power	150 VA maximum

Environmental

Operating temperature	0 to 55 °C
Storage temperature	–40 to +70 °C
Operating humidity	15 to 95% relative humidity
	(non condensing)
EMI compatibility	radiated emission is in
	compliance with CISPR
	Pub 11/1990 Group 1 Class A

Inputs/Outputs

Front panel

RF input/output

Rear panel

F	
10 MHz REF IN	BNC(f), 50 Ω
10 MHz REF OUT	BNC(f), 50 Ω
GPIB	IEEE-488
LAN	RJ-45, 10/100-T
USB	USB 1.0/2.0

Additional rear panel connectivity with N4010A input/output connectivity Option $110\,$

AUX RF input/output	type-N (f), 50 Ω
TRIG IN	BNC (f), 50 Ω ; input has TTL
	compatible logic levels
TRIG OUT	BNC (f), 50 Ω ; output has TTL
	compatible logic levels
75 MHz IF output	SMA (f), 50 Ω
Event 1	BNC (f), 50 Ω
Event 2	BNC (f), 50 Ω
Bluetooth and WLAN	25-way D (f)
triggers, data, and clock	

type-N (f), 50 Ω

Size and weight

Dimensions	(H x W x D)	Model no
With handle and	105 mm x 370 mm x 390 mm	N4010A
bumpers		N4010A-101
Without handle	105 mm x 330 mm x 375 mm	N4010A-105
and bumpers		N4010A-106
Weight	5.9 kg (12.98 lbs) for N4010A-101	N4010A-111
-	7.2 kg (15.84 lbs) for	N4010A-112
	N4010A-102, 103, 105	N4010A-102

Regulatory information

Product safety	Conforms to the following product specifications: IEC61010-1:2001/ EN61010-1:2001 CAN/CSA-C22.2 No 1010.1-92 Low voltage directive 72/23/EEC
Electromagnetic compatibility	Complies with the requirements of the EMC Directive 89/336/EEC

Ordering Information

Model no	Description
N4010A	Wireless Connectivity Test Set
N4010A-101	Bluetooth test
N4010A-105	Bluetooth EDR Tx/Rx test
N4010A-106	Bluetooth EDR Tx-only test
N4010A-111	Bluetooth audio
N4010A-112	Bluetooth headset profiles
N4010A-102	2.4 GHz wireless LAN Tx/Rx analysis
N4010A-103	2.4 GHz/5 GHz wireless LAN
	Tx/Rx analysis
N4010A-104	Fully-flexible arbitrary
	waveform generation
N4010A-204	N4010A Signal Studio license
N4010A-110	Additional input/output
	connectivity (required with
	N4010A-102/103)
N4010A-AX4	Rack flange kit
N4010A-191	Carry handle kit
Also available when N40	010A Option 110 ordered:
N4017A	Bluetooth Graphical
	Measurement Application
N4017A-205	Bluetooth EDR
89601A	Vector signal analysis software
	(version 5.20 or greater required)
89601A-200	Basic vector signal analysis software
89601A-300	Hardware connectivity
89601A-AYA	Vector modulation analysis
89601A-B7R	WLAN modulation analysis
	(OFDM and DSSS/CCK/PBCC)
or	
89607A-100	Basic WLAN test suite (with
	hardware connectivity)

Related Literature

Agilent N4010A Wireless Connectivity Test Set Performance Guide Using the 89601A Vector Signal Analysis Software and the 89607A WLAN Test Suite Software, literature number 5989-0637EN

89600 Series Wide-Bandwidth Vector Signal Analyzer, brochure, literature number 5980-0723E

89607A WLAN Test Suite Software, technical overview, literature number 5988-9547EN

Agilent - Next Generation of WLAN Manufacturing Test Solutions, brochure, literature number 5989-1194EN

Test ZigBee™ modules and appliances – today!, product overview, literature number 5989-3980EN

Agilent N4017A Bluetooth Graphical Measurement Application, product overview, literature number 5989-2771EN

Agilent N4010A Wireless Connectivity Test Set Configuration Guide, literature number 5989-3486EN

Test Multiple Wireless Connectivity Technologies with One Test Platform, brochure, literature number 5989-4150EN

For More Information

For more information on N4010A visit **www.agilent.com/find/N4010A**

For more information on N4017A Graphical Measurement Application visit www.agilent.com/find/N4017A

For more information on Agilent Technologies' Bluetooth, WLAN, and ZigBee™ solutions visit www.agilent.com/find/bluetooth www.agilent.com/find/wlan www.agilent.com/find/zigbee

Agilent Email Updates

www.agilent.com/find/emailupdates

Get the latest information on the products and applications you select.

Agilent Direct

www.agilent.com/find/agilentdirect

Quickly choose and use your test equipment solutions with confidence.

www.agilent.com/find/open

Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of systemready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

www.agilent.com

Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you receive your new Agilent equipment, we can help verify that it works properly and help with initial product operation.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

 United States:
 Korea:

 (tel) 800 829 4444
 (tel) (08

 (fax) 800 829 4433
 (fax) (08

 Canada:
 Latin Au

 (tel) 877 894 4414
 (tel) (30

 (fax) 800 746 4866
 Taiwan:

 China:
 (tel) 080

 (tel) 800 810 0189
 (fax) 081

 (fax) 800 820 2816
 Other A

 Europe:
 Countrivited (tel) (40)

 (tel) 31 20 547 2111
 (tel) (65)

 Japan:
 (fax) (65)

 (tel) (81) 426 56 7832
 Email: tr

 (fax) (81) 426 56 7840
 Contracts revisit

Korea: (tel) (080) 769 0800 (fax) (080) 769 0900 Latin America: (tel) (305) 269 7500 Taiwan: (tel) 0800 047 866 (fax) 0800 286 331 Other Asia Pacific Countries: (tel) (65) 6375 8100 (fax) (65) 6755 0042 Email: tm_ap@agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2005 Printed in USA, November 27, 2005 5989-4035EN

Microsoft, Windows 2000, and XP are U.S. registered trademarks of Microsoft Corporation.

Pentium is a U.S. registered trademark of Intel Corporation. ZigBee is a trademark of the ZigBee Alliance.

